

High Pressure In-Line Filter Assemblies

Donaldson Hy-Pro's PFH14, PFH55, and PFH167 pressure filters are designed to protect sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump in smaller systems to minimize risk of failure and costly system downtime.

Ideal for use as a power unit pump discharge filter or a pilot filter, and to protect components that are sensitive to particulate contamination and require clean pressurized fluid for reliable operation, such as servo valves.

Max Flow Rate: 95 gpm (360 lpm)

Max Operating Pressure: 6090 psi (420 bar)

Dynamic Filter Efficiency

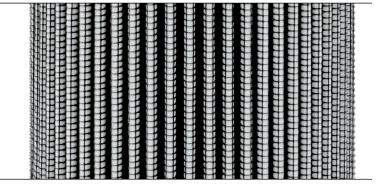
Hydraulic applications see dynamic flow changes on a regular basis. Dynamic Filter Efficiency testing takes the ISO16889 Multi-Pass testing even further with variable flow shifts to ensure your filter elements stand up to real world conditions and maintain the highest capture and retention rates in the industry.

Industrial duty.

Standard mounting holes for optional brackets, aluminum ID tags, a variety of indicator options, and standard drain ports make the PFH the ideal choice for heavy duty hydraulic filtration.

Unique applications.

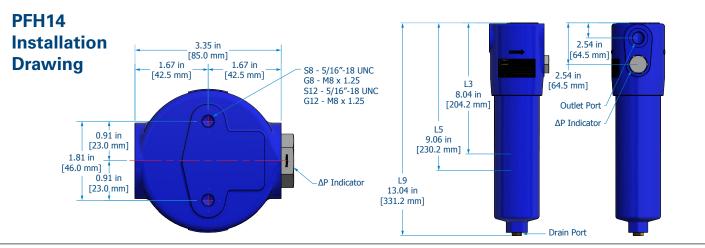
With available nickel plating, the PFH14, PFH55 and PFH167 are ideal choices for rough duty, high water contamination applications. Media options include wire mesh, water removal, and Dualglass to address even the most unique contamination. A reverse flow check valve option enables usage in reversing hydrostatic drive systems.



Minimize the mess.

The PFH series comes standard with bowl drains to minimize mess during servicing. The circumferential o-ring bowl seal eliminates leaking and weeping.

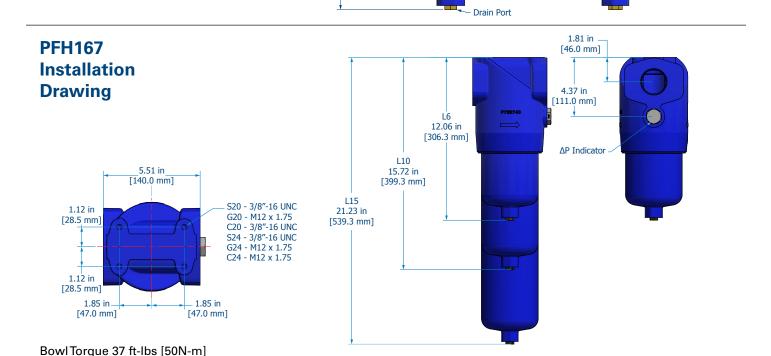
Unique internal flow paths provide low resistance to flow, resulting in a low housing pressure drop. Donaldson Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination meaning your filter will have an incredibly long service life to protect your sensitive components better than ever.



The ideal choice for hydraulics.

Use the PFH as the main high pressure filter(s) in a hydraulic system or upstream of sensitive components as a pilot filter to protect your valves and actuators. The PFH series is engineered to provide lower operating ISO Codes than what is required for compliance with hydraulic component manufacturers' warranties.

PFH Installation Drawings


PFH55 1.30 in [33.0₄ mm] Installation 3.23 in **Drawing** [82.0 mm] Coutlet Port → Outlet Port ΔP Indicator S12 - 5/16"-18 UNC 9.88 in 4.33 in G12 - M10x 1.50 [251.0 mm] [110.0 mm] S16 - 5/16"-18 UNC G16 - M10x 1.50 13.78 in [28.5 mm] [350.0 mm]

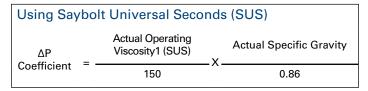
_ 1.12 in [28.5 mm]

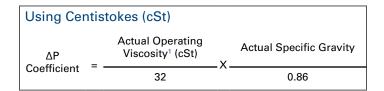
_ 0.98 in [25.0 mm]

0.98 in _

[25.0 mm]

PFH Sizing Guide


Filter Assembly Sizing Guidelines


Effective filter sizing requires consideration of flow rate, viscosity (operating and cold start), fluid type and degree of filtration. When properly sized, bypass during cold start can be avoided/minimized and optimum element efficiency and life achieved. The filter assembly differential pressure values provided for sizing differ for each media code, and assume 32 cSt (150 SUS) viscosity and 0.86 fluid specific gravity. Use the following steps to calculate clean element assembly pressure drop.

Sizing recommendations to optimize performance and permit future flexibility

- To avoid or minimize bypass during cold start the actual assembly clean ΔP calculation should be repeated for start-up conditions if cold starts are frequent.
- Actual assembly clean ΔP should not exceed 10% of bypass ΔP gauge/indicator set point at normal operating viscosity.
- If suitable assembly size is approaching the upper limit
 of the recommended flow rate at the desired degree
 of filtration consider increasing the assembly to the
 next larger size if a finer degree of filtration might
 be preferred in the future. This practice allows the
 future flexibility to enhance fluid cleanliness without
 compromising clean ΔP or filter element life.
- Once a suitable filter assembly size is determined consider increasing the assembly to the next larger size to optimize filter element life and avoid bypass during cold start.
- When using water glycol or other specified synthetics, we recommend increasing the filter assembly by 1~2 sizes.

Step 1: Calculate ΔP coefficient for actual viscosity

Step 2: Calculate actual clean filter assembly ΔP at both operating and cold start viscosity

Actual Assembly =	Flow Rate	Х	ΔP Coefficient (from Step 1)	Х	Assembly ΔP Factor (from sizing table)
Clean ΔP	nate		(Irom Step 1)		(Irom sizing tat

PFH Sizing Guide

Filter Sizing¹

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. See page 22 for filter assembly sizing guidelines & examples. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

			- 4	_	rs^1
/١	$\mathbf{\nu}$	-2	\sim T	\sim	rei

Series	Length	Units	Media						
			1M	3M	6M	10M	16M	25M	**W
PFH14	L3	psid/gpm	2.709	2.286	1.772	1.589	1.555	1.497	0.270
		bard/lpm	0.049	0.042	0.032	0.029	0.028	0.027	0.005
	L5	psid/gpm	2.071	1.748	1.355	1.215	1.189	1.145	0.206
		bard/lpm	0.038	0.032	0.025	0.022	0.022	0.021	0.004
	L9	psid/gpm	1.075	0.907	0.703	0.630	0.617	0.594	0.107
		bard/lpm	0.020	0.017	0.013	0.011	0.011	0.011	0.002
PFH55	L4	psid/gpm	0.944	0.797	0.617	0.554	0.542	0.522	0.094
		bard/lpm	0.017	0.015	0.011	0.010	0.010	0.010	0.002
	L8	psid/gpm	0.580	0.497	0.423	0.383	0.374	0.368	0.066
		bard/lpm	0.011	0.009	800.0	0.007	0.007	0.007	0.001
PFH167	L6	psid/gpm	0.536	0.452	0.350	0.314	0.308	0.296	0.053
		bard/lpm	0.010	0.008	0.006	0.006	0.006	0.005	0.001
	L10	psid/gpm	0.326	0.275	0.213	0.191	0.187	0.180	0.032
		bard/lpm	0.006	0.005	0.004	0.003	0.003	0.003	0.001
	L15	psid/gpm	0.205	0.200	0.155	0.139	0.136	0.131	0.024
		bard/lpm	0.004	0.004	0.003	0.003	0.002	0.002	0.000

1Max flow rates and ΔP factors assume = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula on page 22 for viscosity change.

PFH Specifications

Dimensions	See Installation Drawings o	n page 225 for model specific di	mensions.				
Weight	PFH14 L3: 7.9 lbs (3.6 kg) L5: 9.2 lb (4.2 kg) L9: 13.2 lb (6.0 kg)	PFH55 L5: 14.5 lb (6.6 kg) L9: 18.2 lb (8.3 kg)	L5: 14.5 lb (6.6 kg) L6: 34.6 l				
Operating Temperature	-20°F to 250°F (-29°C to 121°C)						
Operating Pressure	PFH14 6090 psi (420 bar) max	PFH55 6090 psi (420 bar) r	PFH1 max 6090	67 psi (420 bar) max			
Burst Pressure	PFH14 > 11,600 psi (800 bar)	PFH55 > 11,600 psi (800 ba	PFH1 ar) > 11,6	67 600 psi (800 bar)			
Flow Fatigue Rating	PFH14 2,000,000 cycles at 0-300 ba per NFPAT3.10.5.1, R2 2000		t 0-300 bar 2,000	PFH167 2,000,000 cycles at 0-300 bar per NFPAT3.10.5.1, R2 2000			
ΔP Indicator Trigger	73 psid (5 bard)						
Element Collapse Rating	HP***N 450 psid (31.0 bard) max	HP***H 3000 psid (206.8 ba	ard) max				
Integral Bypass Setting	PFH14 90 psid (6.2 bard)	PFH55 90 psid (6.2 bard)	PFH1 90 ps	67 sid (6.2 bard)			
Materials of Construction	Head Spheroidal "cast iron"	Bowl Cold extruded stee		ior Coating der coated			
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $\beta x_{[c]} \ge 4000$	A G8 Dualglass high performance media combined with water removal scrim. $\beta x_{[c]} \ge 4000$	SF Dynafuzz stainless steel fiber media $\beta x_{[C]} \ge 4000$	\boldsymbol{W} Stainless steel wire mesh media $\beta\boldsymbol{x}_{[c]}\geq 2$			
Replacement Elements	To determine replacement elements, use the selected codes from the following page below Series Code Filter Element Part Number Example 14 HP53[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code] HP53HL5-10MB 55 HP152[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code] HP152NL9-16MV 167 HP419[Collapse Code] L [Length Code] – [Media Selection Code][Seal Code] HP419NL15-3AB						
Fluid Compatibility	Biodegradable and mineral	based fluids. For high water bas	sed or specified synthetics	consult factory.			

Compatibility

PFH Part Number Builder

PFH											_		
Series	Con	nection	Element Type	Collapse	Lei	ngth	Bypass	ΔP Indicato	r Specia Option		Media	Seal	
Series	14 55 167	Nominal flow rate up to 15 gpm (57 lpm) ¹ Nominal flow rate up to 35 gpm (132 lpm) ¹ Nominal flow rate up to 95 gpm (360 lpm) ¹											
Connection	PFH14 G12 34" G thread (BSPP) S8 1/2" SAE S12 3/4" SAE			C1 G1 S1	FH55 6 1" Code 16 1" G thr 2 ¾" SAE 6 1" SAE	ead (BS	ge (6000 psi) SPP)	C20 C24 G2 G2 S20	PFH167 C20 1.25" Code 62 flange (6000 psi) C24 1.5" Code 62 flange (6000 psi) G20 1.25" G thread (BSPP) G24 1.5" G thread (BSPP) S20 1.25" SAE S24 1.5" SAE				
Element Type	PFH14 53 HP53 filter element				PFH55 152 HP152 filter element					PFH167 419 HP419 DIN standard filter element			
Collapse Rating	H N		osid (206.8 ba id (31.2 bard)					o housing byp ypass	pass				
Length	PFH ² 3 5 9	H14 3" (10 cm) nominal element 5" (13 cm) nominal element 9" (23 cm) nominal element				•		inal element inal element	PF 6 10 15	10" (25 cm) nominal element			
Bypass	6 X ²	90 psid (6.2 bard) bypass No bypass											
ΔP Indicator	Indic D DX T V	Visual Electri Visual Visual	ptions / Electrical (E cal switch on / Electrical (E	ly (DIN 436 DIN 43650)	50)	The No No Yes No	ermal	Lockout	St No No No		ontrol	Reset Auto Auto Manual Auto	
Special Options	C ³ M2 N ⁴	Reverse flow check valve Mounting bracket Nickel plated internal components for high water applications (non-bypass only)											
Media Selection	G8 D 1M 3M 6M 10M 16M 25M	$\beta 3_{[c]} \ge \beta 4_{[c]} \ge \beta 6_{[c]} \ge \beta 11_{[c]} \ge \beta 16_{[c]} \ge \beta 22_{[c]} \ge \beta 22_{$	4000 4000 4000 2 4000			G8 3A 6A 10A 25A	β4 _{ισ} β6 _{ισ} β11	ass + water r c ≥ 4000 c ≥ 4000 c ≥ 4000 c ≥ 4000 c ≥ 4000	removal				
	Dynafuzz stainless fiber 3SF $\beta 4_{ C } \ge 4000$ 6SF $\beta 6_{ C } \ge 4000$ 10SF $\beta 11_{ C } \ge 4000$ 25SF $\beta 22_{ C } \ge 4000$					Stainless wire mesh 25W 25μ nominal 40W 40μ nominal 74W 74μ nominal 149W 149μ nominal							
Seals	B V ³ E-WS ³	Fluoro	(Buna) carbon eals + stainles	ss steel sup	port r	mesh							

¹Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection.

²Only available when paired with "H" high collapse element.

³Must be paired with Bypass option "6". Not compatible with Special Option "N".

When selected, automatically adds nickel plating to filter element. For replacement elements, add"-N" to end of filter element part number. Not available on PFH840 series.

For all up to date option details and compatibilites, please reference our Contamination Solutions Price List or contact customer service.

