PF4

High Pressure Base Mounted Filter Assemblies

Donaldson Hy-Pro PF4 pressure filters are designed for protecting sensitive components in hydraulic circuits. Install the series upstream of specific components or directly after the pressure pump to minimize risk of failure and costly system downtime.

Ideal for components that are sensitive to particulate contamination, such as the servo valve, and require clean pressurized fluid for reliable operation.

Max Flow Rate: 150 gpm (568 lpm)

Max Operating Pressure: 6,000 psi (414 bar)

 $\underset{\text{HY-PRO}}{Donaldson}.$

hyprofiltration.com/

Filtration starts with the filter.

G8 Dualglass elements are DFE rated to assure performance even when exposed to the toughest hydraulic systems and provide unmatched particulate capture and retention to protect servo valves and ensure you're operating at maximum efficiency.

Minimize the mess.

The top loading housing on PF4 filter assemblies provide easy and clean access when servicing or changing the element. Accessing the element is as simple as removing the housing cover, meaning you have no heavy bowl to lift and can get back in operation quicker than ever.

HF4 Compatible Design.

The PF4 series is engineered to meet mill and plant target cleanliness codes and required ISO4406:1999 cleanliness standards to meet hydraulic component manufacturers warranties. Available with HF4 compatible port to port dimension, mounting pattern, and element design to meet the automotive manufacturing standard.

Works with your system.

Available with several port and length configurations, you'll be amazed at how easily the PF4 integrates directly into your system.

PF4 assemblies come with an array of standard indicator options to allow you to customize your assemblies for your exact applications. From thermal lockouts to surge protection, your system will be prepared for whatever comes its way.

Extend the life of your element.

Donaldson Hy-Pro's advanced filter media delivers lower operating ISO Codes to eliminate internally generated contamination. With the widest range of media options and the large surface area of PF4 elements, your filter will have an incredibly long service life to protect your sensitive components better than ever.

PF4 Sizing Guidelines

Filter Sizing¹

Filter assembly clean element ΔP after actual viscosity correction should not exceed 10% of filter assembly bypass setting. For applications with extreme cold start condition contact Donaldson Hy-Pro for sizing recommendations.

ΔP Factors ¹	Collapse	Length	Units	Media									
				1M	3M	6M	12M	16M	25M	**W			
	PF4K**, PF4K1**, PF4KC**	L9	psid/gpm	0.2374	0.2003	0.1553	0.1392	0.1362	0.1312	0.0236			
	1140		bard/lpm	0.0043	0.0036	0.0028	0.0025	0.0025	0.0024	0.0004			
		L18	psid/gpm	0.1167	0.0985	0.0764	0.0685	0.0670	0.0645	0.0116			
			bard/lpm	0.0021	0.0018	0.0014	0.0012	0.0012	0.0012	0.0002			
		L27	psid/gpm	0.0775	0.0654	0.0507	0.0454	0.0444	0.0428	0.0077			
			bard/lpm	0.0014	0.0012	0.0009	0.0008	0.0008	0.0008	0.0001			
	PF4K3** (non- bypass housing)	L9	psid/gpm	0.3376	0.2849	0.2208	0.1980	0.1937	0.1866	0.0336			
			bard/lpm	0.0061	0.0052	0.0040	0.0036	0.0035	0.0034	0.0006			
		L18	psid/gpm	0.1651	0.1393	0.1080	0.0968	0.0947	0.0912	0.0164			
			bard/lpm	0.0030	0.0025	0.0020	0.0018	0.0017	0.0017	0.0003			
		L27	psid/gpm	0.1094	0.0924	0.0716	0.0642	0.0628	0.0605	0.0109			
			bard/lpm	0.0020	0.0017	0.0013	0.0012	0.0011	0.0011	0.0002			

¹Max flow rates and ΔP factors assume β = 150 SUS, 32 cSt. See filter assembly sizing guideline for viscosity conversion formula for viscosity change.

PF4 Installation Drawings

PF4 Specifications

Dimensions	See Installation Drawings for mo	del specific dimension	ns.		
Weight		F4 L18 ? Ibs (37.5 kg)	PF4 L27 109 lbs (49.5 kg)	PF4 L36 135 lbs (61.3	kg)
Operating Temperature	-20°F to 250°F (-29°C to 121°C)				
Operating Pressure	6,000 psi (414 bar) max code 62 5,500 psi (379 bar) max all other				
Flow Fatigue Rating	3,500 psi (238 bar)				
Burst Pressure	16,400 psi (1130 bar)				
ΔP Indicator Trigger	70 psid (4.8 bard) for both bypas Refer to Appendix for indicator v				
Element Collapse Rating	290 psid (20.0 hard) 30	PK3 000 psid (206.8 bard)	HPK5 5000 psid (344.7 ba	HPKC 150 psid (10.	3 bard)
Integral Bypass Setting	90 psid (6.2 bard)				
Materials of Construction	Head/Lid Ductile iron (powder coated)	Bowl Seamless stee	el tubing (powder coated)	Assembly Bypass Valve Delrin	•
Media Description	M G8 Dualglass, our latest generation of DFE rated, high performance glass media for all hydraulic & lubrication fluids. $βx_{[c]} ≥ 4000$	A G8 Dualglass media combin removal scrim		$\begin{array}{l} \textbf{W} \\ \text{Stainless steel wire me} \\ \text{media } \beta x_{[c]} \geq 2 \end{array}$	esh
Replacement Elements	To determine replacement Filter Element Part Number HP[Collapse Rating Code]L[Length			rom your assembly Example HPKL18–16MV	part number:
Fluid Compatibility	Petroleum and mineral based flu other specified synthetic fluids u			r, and	

PF4 Part Number Builder

PF4							-		-					
	Connection	Col	lapse	Length	Bypass	Indicator	Opti	ons	N	1 edia	Seal			
Connection Port C24 F24 G24 M24 S24		Option 1.5" Code 62 flange 1.5" Code 61 flange 1.5" GThread (BSPP) Manifold mount (see installation detail) 1.5" SAE				150 g 150 g 150 g 150 g	Max Flow Rate 150 gpm (568 lpm) ¹ 150 gpm (568 lpm) ¹ 150 gpm (568 lpm) ¹ 150 gpm (568 lpm) ¹ 150 gpm (568 lpm) ¹			Max Pressure Rate 6000 psi (414 bar) 5500 psi (379 bar) 5500 psi (379 bar) 5500 psi (379 bar) 5500 psi (379 bar)				
Collaps Rating	е	K K3 K5 KC	3000 p 5000 p	sid (206.8 b sid (344.7 b	nent configura ement configuement configueme	uration uration								
Elemer Length	nt	9 18 27 36	18" (46 27" (69	6 cm) nomir 9 cm) nomir	nal length fil nal length fil	er element an ter element a lter element a ter element a	nd hous nd hous	ng ng						
Bypass		3 6 X		l (3.4 bard) l (6.2 bard) bass										
ΔP Indi	cator	Indi D S V X Y	Visual Visual	/ Electrical (/ Electrical (icator (port	(DIN 43650) (DIN 43650) plugged)		The No Yes No - Yes	rmal Lo	ock	out	Surge C No Yes No - Yes	Contr		Reset Auto Manual Auto – Manual
Special Options		C N		e flow chec plated inter		nents for high	water a _l	plication	ns (ı	not availa	able with S	Specia	l Optio	n C)
Media Selection		G8 I 1M 3M 6M 12M 16M 25M	Dualglass $\beta 3_{ C } \ge 4000$ $\beta 4_{ C } \ge 4000$ $\beta 6_{ C } \ge 4000$ $\beta 11_{ C } \ge 4000$ $\beta 16_{ C } \ge 4000$ $\beta 22_{ C } \ge 4000$					G8 Dualglass + water removal 3A $\beta4_{(c)} \ge 4000$ 6A $\beta6_{(c)} \ge 4000$ 12A $\beta11_{(c)} \ge 4000$ 25A $\beta22_{(c)} \ge 4000$						
		Dyn 3SF 6SF 10SF 25SF	$\beta4_{[C]} \ge \beta6_{[C]} \ge \beta11_{[C]} \ge$	4000 : 4000	iber		10W 25W 40W 74W	nless v 10µ noi 25µ noi 40µ noi 74µ noi 149µ no	min min min min	ial ial ial				
Seals		B V E-WS		carbon	ess steel sup	oport mesh								

'Maximum recommended flow rate based on velocity through port and internal flow path. Consult sizing guidelines or consult factory for sizing based on flow rate, viscosity, temperature, filter media selection. For all up to date option details and compatibilities, please reference our Contamination Solutions Price List or contact customer service.

Want to find out more? Get in touch.

hyprofiltration.com info@hyprofiltration.com +1 317 849 3535

